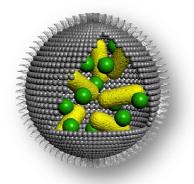
A solid-in-oil dispersion of gold nanorods to enhance protein delivery and immune response through the skin

Dakrong Pissuwan

JSPS Postdoctoral Fellow

Kyushu University, Department of Applied Chemistry, Faculty of Engineering, 744 Motooka,

Nishi-ku, Fukuoka 819-0395, Japan


(dakrong@mail.cstm.kyushu-u.ac.jp)

Transdermal delivery systems have been developed for various pharmaceuticals [1]. For effective transdermal delivery, the protein/drug must be able to pass through the skin barrier and attain the specific target. There has been recent interest in the use of solid-in-oil dispersions for transdermal protien delivery developed by Goto *et al.*[2]. Unfortunately, the permeability of high molecular weight protein through the skin using this technique is still low. Here, the further development was addressed by combining gold nanorods with solid-in-oil dispersions to enhance the skin permeation of large proteins and induce an immune response through the skin. When the surfactant-protein-gold nanorod complex was applied to the skin *in vitro* and irradiated by a near infrared (NIR) light, a model protein (ovalbumin, OVA) could be delivered through the skin and induce an immune response in mice. This combination provides a higher efficiency for OVA deliver through the skin than the original formulation using the solid-in-oil dispersion without gold nanorods [3]. Therefore, it would be well suited for the improvement of trandermal delivery and skin vaccination of proteins.

1. Thomas BJ, Finnin BC. The transdermal revolution. Drug Discov. Today, 2004,9(16):697-703.

2. Tahara Y, Honda S, Kamiya N, Piao H, Hirata A, Hayakawa E, et al. A solid-in-oil nanodispersion for transcutaneous protein delivery. *J. Controlled Release* 2008,131(1):14-18.

3. Pissuwan, D., Nose, K., Kurihara, R., Kaneko, K., Tahara, Y., Kamiya, N., Goto, M., Katayama, Y., Niidome, T. Solid-in-oil dispersion of gold Nanorods can enhance transdermal protein delivery and skin vaccination. *Small* ,2011, 7(2):215-220

