Visualizing the appearance and disappearance of the attractor of

differentiation using Raman spectral imaging

Taro Ichimura, Liang-da Chiu, Katsumasa Fujita, Hiroaki Machiyama, Satoshi Kawata,

Tomonobu M. Watanabe & Hideaki Fujita

Keywords: Raman spectral imaging, cell differentiation, potential landscapes

Using Raman spectral imaging, the research groups of Tomonobu Watanabe (RIKEN

QBiC) and Hideaki Fujita (Single Molecule Imaging, IFReC) visualized the cell state

transition during differentiation and constructed hypothetical potential landscapes for

attractors of cellular states on a state space composed of parameters related to the shape

of the Raman spectra. As models of differentiation, they used the myogenic C2C12 cell

line and mouse embryonic stem cells. Raman spectral imaging can validate the amounts

and locations of multiple cellular components that describe the cell state such as proteins,

nucleic acids, and lipids; thus, it can report the state of a single cell.

The groups visualized the cell state transition during differentiation using Raman spectral

imaging of cell nuclei in combination with principal component analysis. During

differentiation, cell populations with a seemingly homogeneous cell state before

differentiation showed heterogeneity at the early stage of differentiation. At later

differentiation stages, the cells returned to a homogeneous cell state that was different

from the undifferentiated state. Thus, Raman spectral imaging enables us to illustrate the

disappearance and reappearance of an attractor in a differentiation landscape, where

cells stochastically fluctuate between states at the early stage of differentiation.

Scientific Reports | 5:11358 | DOI: 10.1038/srep11358



Each color in the cell represents the difference of the Raman spectra. The colors of the cytoplasm and cell nucleus depend on the type of cells or on the stage of cell differentiation.



The potential landscapes in cell differentiation using Raman spectral imaging