Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment

Yohko Kitagawa, Naganari Ohkura, Yujiro Kidani, Alexis Vandenbon, Keiji Hirota, Ryoji Kawakami, Keiko Yasuda, Daisuke Motooka, Shota Nakamura, Motonari Kondo, Ichiro Taniuchi, Terumi Kohwi-Shigematsu, Shimon Sakaguchi

Most Foxp3⁺ regulatory T (T_{reg}) cells develop in the thymus as a functionally mature T-cell subpopulation specialized for immune suppression. Their cell fate appears to be determined before *Foxp3* expression; yet molecular events that prime Foxp3⁻ T_{reg} precursor cells are largely obscure. Here we showed that T_{reg} cell-specific super-enhancers (T_{reg}-SEs), which were associated with *Foxp3* and other T_{reg} cell signature genes, began to be activated in T_{reg} precursor cells. T cell-specific deficiency of the genome organizer Satb1 impaired T_{reg}-SE activation and the subsequent expression of T_{reg} cell signature genes, causing severe autoimmunity due to T_{reg} cell deficiency. Our results suggest that Satb1-dependent T_{reg}-SE activation crucially controls T_{reg}-cell lineage specification in the thymus and its perturbation is causative of autoimmune and other immunological diseases.

Key words: Immune regulation, epigenetics, cell differentiation, regulatory T cells (Tregs)

A mechanism for the differentiation of regulatory T cells